Feasibility and Biomarker Validation of an International Randomized Phase 3 of Bria-IMT Cell Therapy

in Late Stage MBC (Bria-ABC)

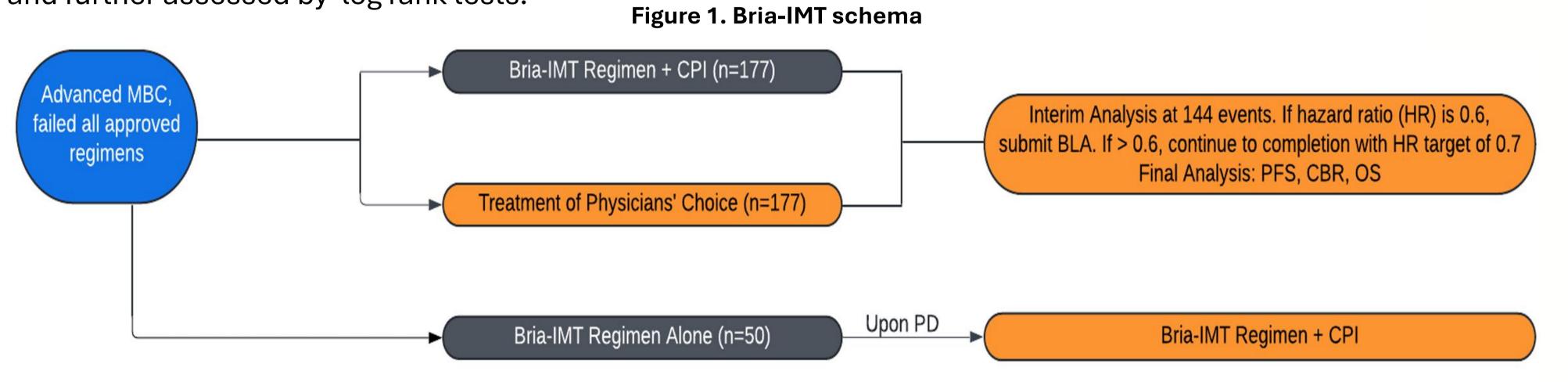
BriaCell

S. Hurvitz¹, J. O'Shaughnessy², C. Nangia³, L. Negret⁴, C. Calfa⁴, A. Kahn⁵, M. Barve⁶, R. Shatsky⁷, A. Brufsky⁸, R. Zuniga⁹, M. Cristofanilli¹⁰, B. Bayer¹¹, W. Williams¹¹, G. Del Priore^{11,12}, S. Chumsri¹³ ¹University of Washington, Seattle, United States of America, ²Texas Oncology - Baylor Sammons Cancer Center, Dallas, United States of America, ³Hoag Cancer Center, Newport Beach, United States of America, ⁴University of Miami Sylvester Comprehensive Cancer Center, Miami, United States

ESMO 2025 of America, ⁵Yale University, New Haven, United States of America, ⁶Mary Crowley Cancer Research Center, Dallas, United States of America, ⁸UPMC Hillman Cancer Center, Pittsburgh, United States of America, 9New York Cancer and Blood Specialists, New York, United States of America, 12Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, New York, United States of America, 14Morehouse School of Medicine, 14Morehouse School of Medicine, 14Morehouse School of Medicine, 14Morehouse School of Medicin

Atlanta, United States of America, ¹³Department of Haemato-Oncology, Mayo Clinic - Florida, Jacksonville, United States of America

Berlin, Germany **FPN 570P**


showing PFS in patients with an

BACKGROUND

Bria-IMT is a combination immunotherapy comprising the allogeneic whole-cell vaccine SV-BR-1-GM, administered with low-dose cyclophosphamide (CTX), pegylated interferon alpha (IFNα), and an immune checkpoint inhibitor (CPI). SV-BR-1-GM breast cancer cells are engineered to express both class I and II HLA molecules, secrete GM-CSF to enhance dendritic cell activation, and present tumor associated antigens such as HER2 and PRAME. Functioning as antigen presenting cells, these cells serve as a reservoir of shared tumor antigens capable of activating antitumor immune responses. Subsequent enhancements to SV-BR-1-GM have improved in vitro immunologic characteristics (Lopez-Lago, SABC 2023)¹. The addition of CPI is intended to potentiate SV-BR-1-GM-induced immune activation by overcoming tumor-induced immune suppression. We present updated findings from prospective randomized and post hoc exploratory analyses in patients with advanced metastatic breast cancer (aMBC) treated with the Bria-IMT regimen.

METHODS

Patients are randomized 1:1:1 to receive the Bria-IMT regimen + CPI, the Bria-IMT regimen alone, or Treatment of Physicians Choice (TPC). The Bria-IMT regimen includes Day -2 CTX (300 mg/m²), Day 0 intradermal SV-BR-1-GM (20x10⁶M irradiated cells), and Day 2-3 IFNα (0.1 mcg/site). CPI is administered q3w per protocol. Imaging assessments are performed every 6 weeks (×2) then every 8 weeks. ECOG2, CNS metastases, prior checkpoint inhibitor (CPI), antibody drug conjugate (ADC), or CDK4/6 inhibitor (CDK4/6i) exposure, are eligible, with no limit on prior lines. This interim report evaluates trial feasibility, biomarker validation, and arm blind PFS stratified by prior treatment failures, immunologic matching, and cellular biomarkers. PFS was reported using Kaplan Meier curves and further assessed by log rank tests.

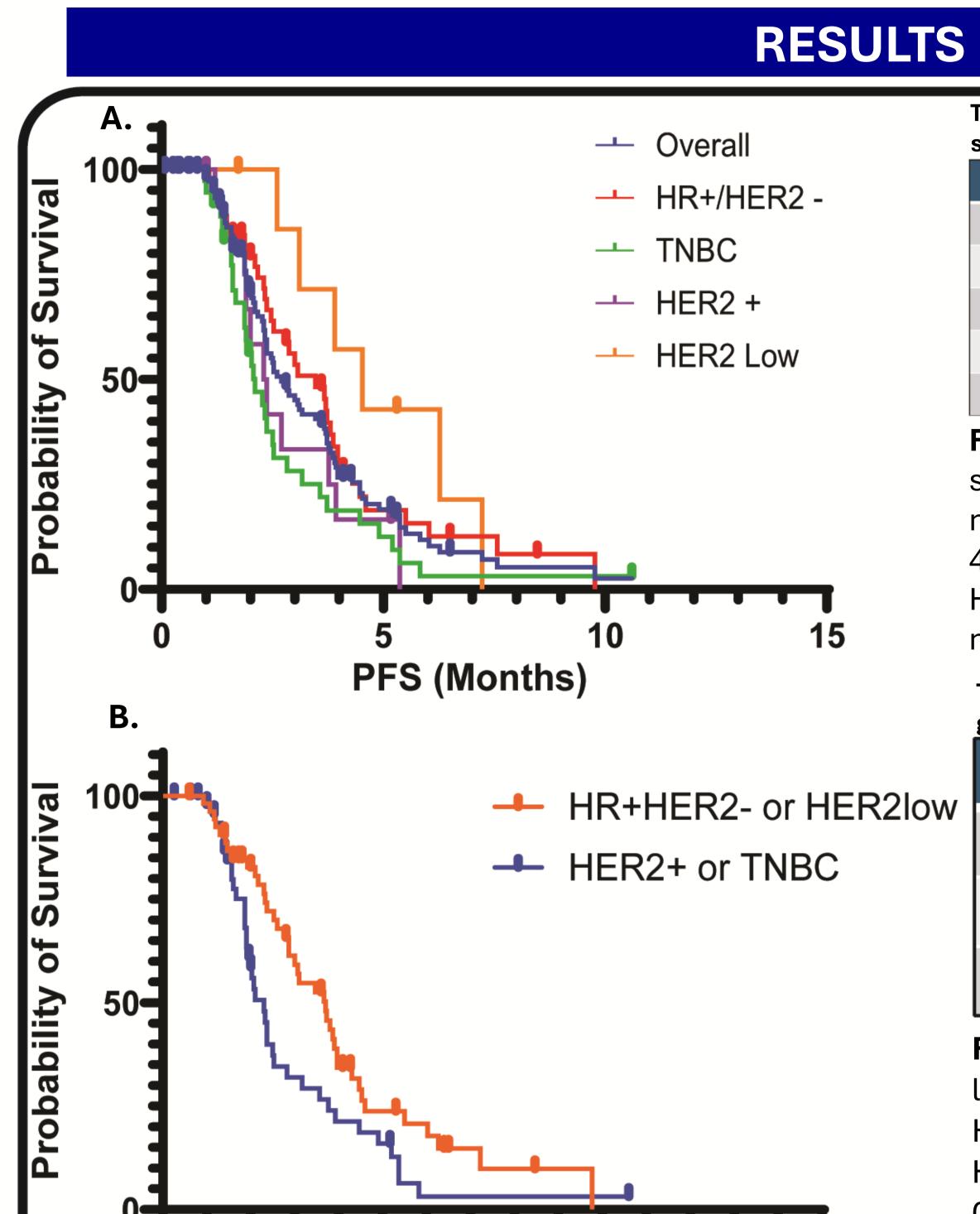
Time to event analyses for the primary outcome will use the Kaplan-Meier method and stratified log-rank test with randomization stratification factors, for testing significance.

RESULTS

able 1: Patient Demographic	es
Characteristic	N (%)
Age, Median (Range)	52 (32-91)
BMI, Median (Range)	25.1 (8.7 – 45.7)
• White	88 (78)
Other	25 (22)
• ECOG 0	55 (49)
• ECOG 1	50 (44)
• ECOG 2	7 (6)
Tumor Grade 1	3 (3)
Grade 2	16 (14)
Grade 3	26 (23)
Grade 4	3 (3)
• Unknown	65 (57)
Prior systemic therapy, Median (Range)	6 (2-15)
Previous therapies	
• ADC	97 (85)
• CPI	31 (27)
 CDK4/6 inhibitors 	66 (58)
Number of HLA Match	
• 0	66 (62)
• ≥ 1	20 (19)
Unreported	21 (19)

_	Figure 2:	Best ORR	and CBR	R by	MBC Sub	otype		
80 -				83.3%				RR BR
70 -								
60 -		53.3%					52.5%	
50 -						46.7%	52.5%	
40 -	37.5%							
30 -								
20 -			16.7%		13.3%			

abl	le	2:	Ad	ver	se	Ev	en	ts	0


Table 2: Adverse Events Occurring in ≥ 10% of Patients								
Adverse Event	<u>Maximum Grade</u>							
	<u>Grade 1</u>	<u>Grade 2</u>	Grade 3	<u>Grade 4</u>				
	N	umber of su	ubjects (pe	ercent)				
Fatigue	17(14.5)	14(12)	3(2.6)	0				
Anemia	11(9.4)	7 (6)	7(6)	1 (0.85)				
Nausea	15(12.8)	10(8.5)	1(0.85)	0				
Constipation	13(11.1)	6(5.1)	1(0.85)	0				
Vomiting	8(6.8)	7(6)	1(0.85)	0				
Injection site reaction	14(12)	1(0.85)	0	0				
Lymphocyte count decrease	4(3.4)	9(7.7)	2(1.7)					
Anorexia	9(7.7)	5(4.2)	0	0				
Back pain	7(6)	4(3.4)	2(1.7)	0				
Cough	5(4.2)	8(6.8)	0	0				
Headache	10(8.5)	2(1.7)	1(0.85)	0				
Neutrophil count decrease	5(4.2)	3(2.6)	3(2.6)	1(0.85)				

SV-BR-1-GM was well-tolerated with no discontinuations due to toxicity. Table 3: Clinical Benefit in Evaluable Patients by MBC Subtype

Biomarkers (%)		Patients with Evaluable Outcome	Best ORR [CR, PR] in Evaluable Patients	Best CBR [CR, PR, SD] in Evaluable Patients	
HER2+	14 (12)	8	0 %	37.5 %	
HR + / HER2 -	48 (42)	30	6.7 %	53.3 %	
HER2low	9 (8)	6	16.7 %	83.3 %	
TNBC	40 (35)	15	13.3 %	46.7 %	
Overall	113*	59	8.5 %	52.5 %	

The MBC subtype status of 2 patients are not yet reported; thus overall N = 113, not N = 111 as indicated by

the sum of patients listed by MBC subtype above

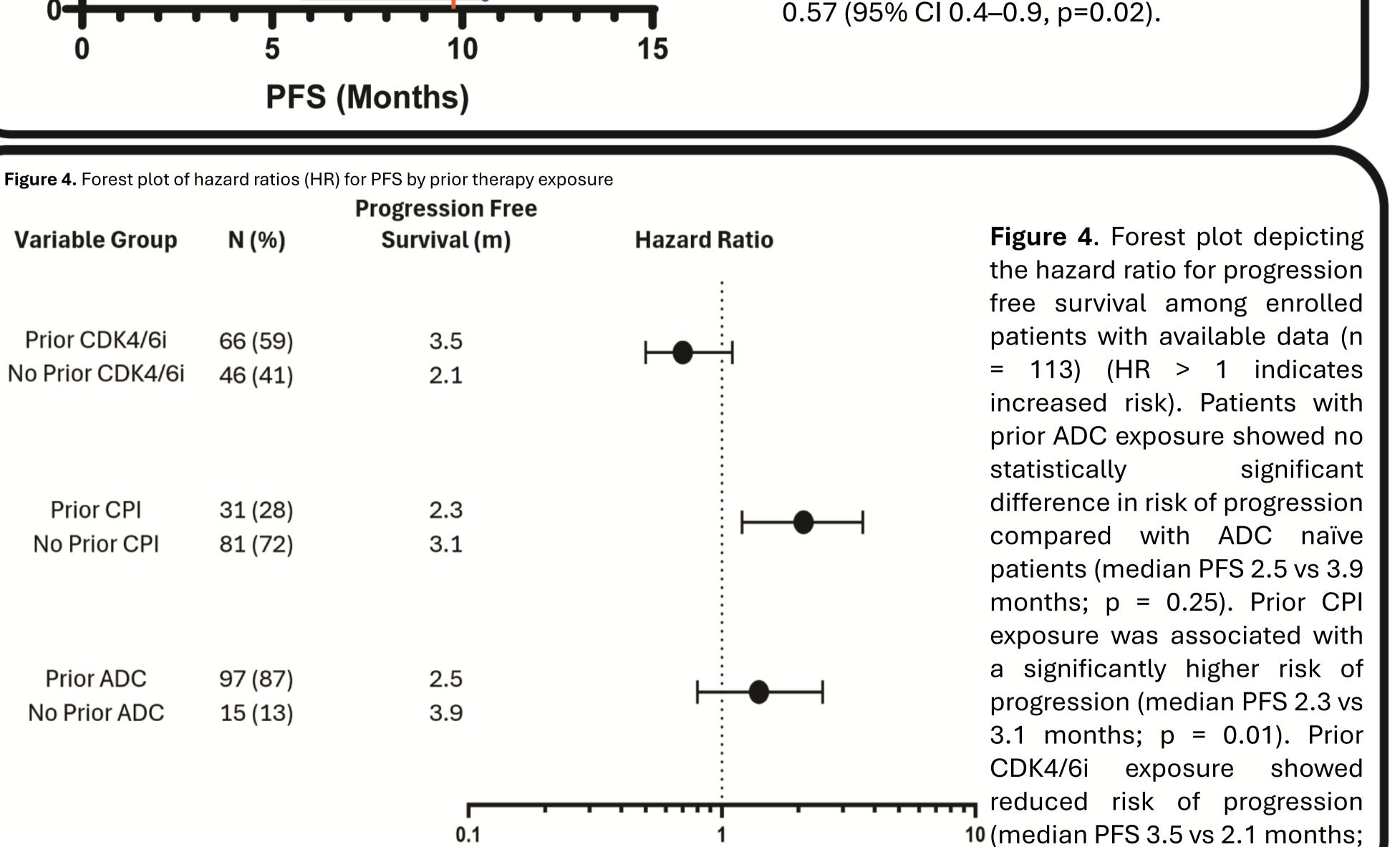


Table 4. Progression Free Survival in full cohort by MBC

Subtype

HER2-/HR+

HER2low

HER2+

TNBC

Overall

Median (months)

3.5

4.5

2.3

2.1

2.7

Figure 3A. Kaplan-Meier PFS by MBC

subtype: Subtype-specific analysis showed

median PFS of 3.5 months in HER2-/HR+,

4.5 months in HER2-low, 2.3 months in

HER2+, and 2.1 months in TNBC; overall

Figure 3B. Grouped analysis showed

longer median PFS in HR+/HER2- or

HER2-low (3.7 months) compared with

HER2+ or TNBC (2.3 months), with HR

3.7

Table 5. Progression Free Survival in full cohort by

median PFS was 2.7 months.

grouped MBC subtypes

Subtype

HR+/HER2- or HER2low

HER2+ or TNBC

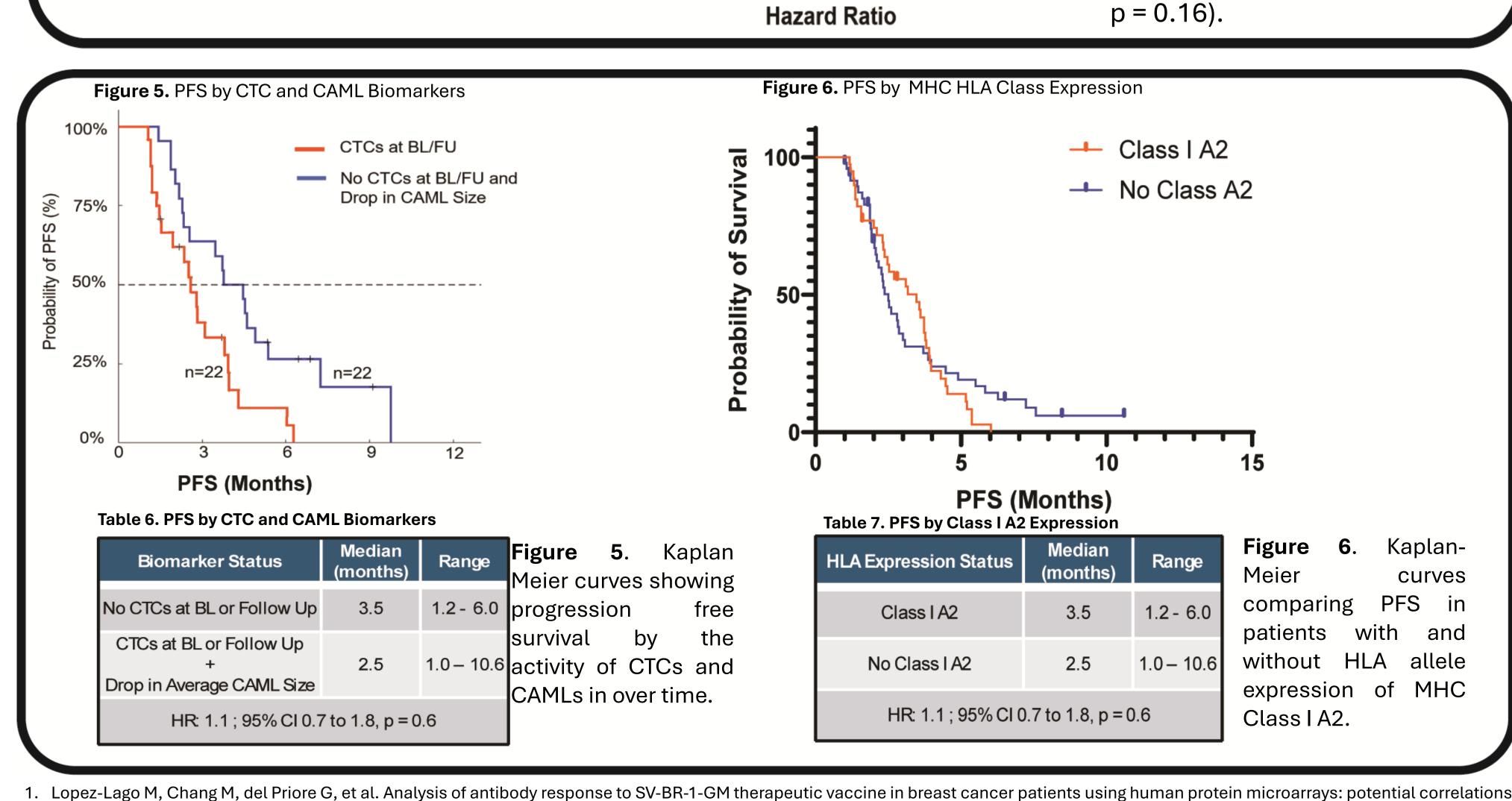
HR: 0.57; 95% CI 0.4 to 0.9, p = 0.02

Range

0.6 - 9.8

0.6 - 7.2

0.4 - 5.4


0.3 - 10.6

0.3 - 10.6

Range

0.6 - 9.8

0.3 - 10.6

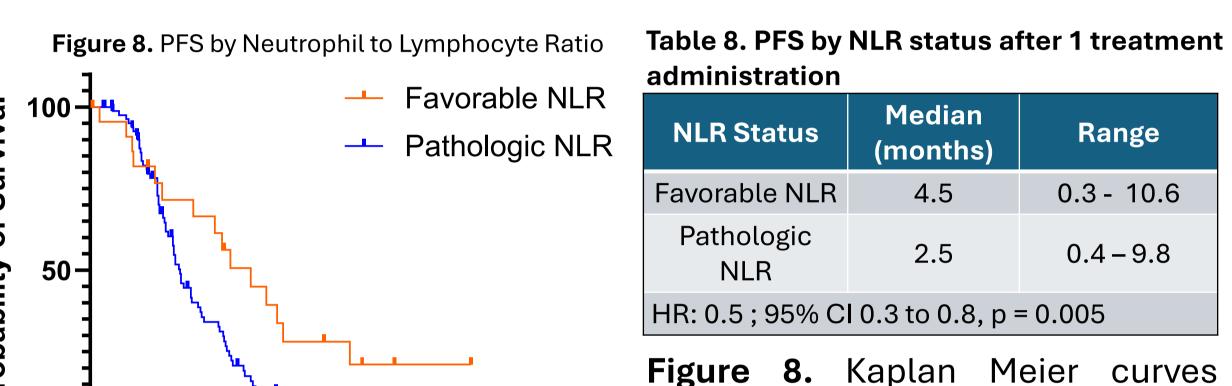

with therapy response [abstract]. Cancer Res. 2024;84(9 Suppl):PO2-13-06

Figure 7. Median best percent change in lesion diameter from baseline by metastatic site

RESULTS

Analysis of median best response of target lesion diameters in patients with evaluable data showed a median best percent change was -5.8% in lymph node metastases and -3.0% in visceral metastases.

15NLR of 0.7 – 2.3 (4.5 mo) vs those with NLR < 0.7 or > 2.3 (2.5 mo). PFS (Months) Table 9. Median Scores per Question in the Physical Functioning Domain of the

EORTC QLQ-C30

Visit Number	N	Q 1	Q 2	Q 3	Q 4	Q 5	Q 6
1	99	2	2	2	1	2	2
2	96	2	2	1	1	2	2
3	84	2	2	1	1	2	2
4	51	3	3	1	2	2	2
5	36	2	2	1	1	2	2
6	19	3	2	1	2	2	2
7	12	2	3	2	1	2	2

Raw scores (range 1 - 4; or N/A) from the physical activity domain evaluating of the EORTC QLQ-C30 Quality of Life survey were analyzed in patients with evaluable data across study visits. Questions evaluated the patient's ability to perform everyday physical tasks (self-reported). Median scores for each of the six domain questions remained stable over time, indicating no deterioration in patient-reported quality of life. Notably, one question demonstrated an improvement in median score through the first seven visits.

CONCLUSIONS

-These blinded data demonstrate our ability to recruit heavily pretreated patients with metastatic breast cancer, some with CNS metastases or a marginal performance status (ECOG 2) i.e. important cohorts with unmet needs.

- -This study aims to discover and validate biomarkers that can potentially be used in the future to optimize patient selection.
- -Enrollment is ongoing at >70 locations in the US -QOL can improve while pursuing important PFS
- and OS goals. including ancillary objectives

sequencing controversies, can be addressed in the context of new drug development.

The first author and presenting author declare no undisclosed conflicts of interest or financial relationships

For further correspondence please reach out to gdelpriore@msm.edu