SV-BR-1-GM after progression on ADC in patients with metastatic breast cancer

BriaCell

Chaitali Nangia¹, Carmen Calfa², Blaise Bayer³, Mingjin Chang³, Tamar Aghajanian³ William Williams³, Giuseppe Del Priore³, Charles Wiseman³, Saranya Chumsri⁴ ¹Hoag Memorial Hospital, Newport Beach, CA, ²University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, ³BriaCell Therapeutics Corp., Philadelphia, PA, ⁴Mayo Clinic, Jacksonville, FL

Figure 1: Absolute Bria-IMT PFS vs Absolute Penultimate

ER/PR+

HER2+

HER2 low or

ASCO 2024 Abstract ID 1087

BACKGROUND

Antibody-drug conjugates (ADCs) such as SG and T-DXd, though effective in metastatic breast cancer (MBC) treatment, are associated with significant challenges including severe adverse events like Interstitial Lung Disease (ILD) and potential for crossresistance due to their shared mechanism of action. SV-BR-1-GM, an allogeneic whole cell therapeutic vaccine, utilizes a distinct therapeutic approach by expressing both class I and II HLAs, secreting GM-CSF, and functioning as an antigenpresenting cell. This vaccine has been enhanced for improved invitro characteristics and serves as a reservoir for cancer antigens such as HER2 and PRAME, activating a specific anti-tumor immune response, thereby offering a potentially safer and noncross-resistant treatment option.

METHODS

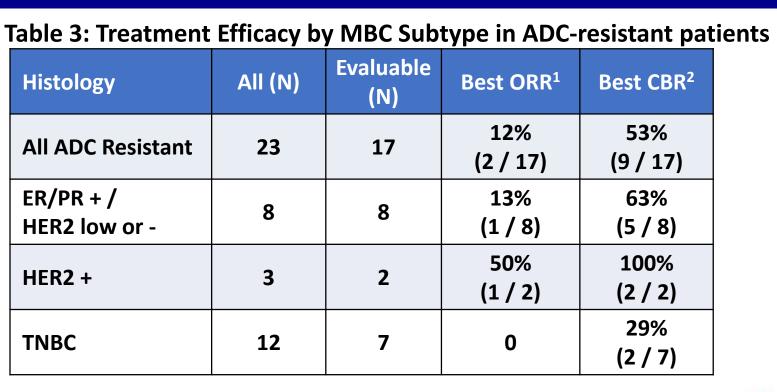
This retrospective subset analysis include 23 ADC-resistant patients in the ongoing Ph2 trial (NCT03328026). The study assesses the efficacy of Bria-IMT (irradiated SV-BR-1-GM ~20 million cells, intradermally 48-72 hours after cyclophosphamide 300 mg/m², followed by low-dose interferon-alpha at the inoculation sites 2 days later), which was administered q3wks in combination with a check point inhibitor (CPI). DTH to Bria-IMT and anergy to Candin were evaluated. Bria-IMT PFS was defined as informed consent date to treatment termination. Penultimate PFS was defined as penultimate treatment start date to treatment termination.

RESULTS

Table 1: ADC-resistant Patient Demograp					
N	23				

N	23		N (%)
Age, Median (Range)	62 (41 - 83)	Metastatic or Recurrent Target	Brain: 2 (9%) Lung: 7 (30%)
Race / Ethnicity	White (65%) Black (22%) Asian (4%)	Lesion sites	Liver: 11 (48%) Bone: 2 (9%) Other: 15 (65%)
	Other (9%) Hispanic (30%)	Prior Systemic Tx, Median (Range)	6 (3 – 13)
ECOG	ECOG 0 (70%) ECOG 1 (30%)	Prior ADC Tx	1 prior ADC: 15 (65%) 2 prior ADC: 8
Tumor Grade	Grade I (9%)		(35%)
	Grade II (43%) Grade III (48%)	Prior CPI Tx	7 (30%)

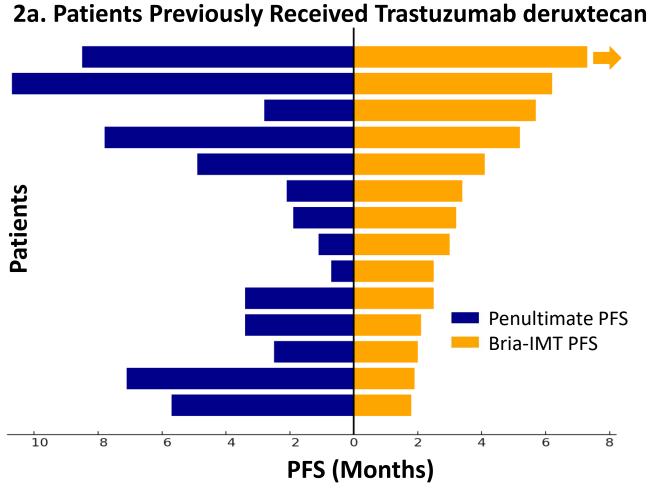
Conclusion: The ADC-resistant cohort was heavily pretreated					
Table 2: Most Common Adverse Events in ADC-resistant patients					
Adverse	<u>Maximum Grade</u>				Total Related
Event Term	Grade 1	Grade 2	Grade 3	Grade 4/5	N (%)
Injection Site Reaction	8 (35%)	2 (9%)	0	0	10 (44%)
Nausea / Vomiting	5 (22%)	4 (17%)	1 (4%)	0	5 (22%)
Fatigue	4 (17%)	3 (13%)	1 (4%)	0	8 (35%)
Anemia	3 (13%)	0	3 (13%)	0	5 (22%)
TSH increased / Hypothyroid ism	5 (22%)	1 (4%)	0	0	4 (17%)
Constipation	2 (9%)	2 (9%)	1 (4%)	0	3 (13%)

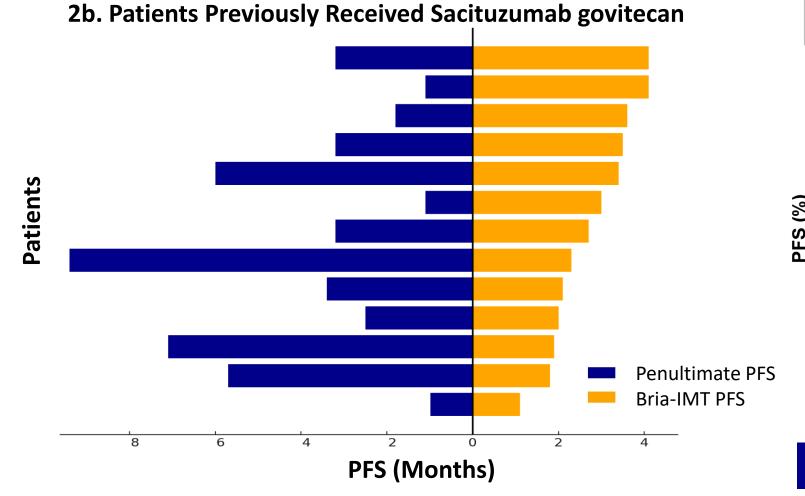

discontinuations due to toxicity, the most commonly reported related AE was injection site reaction, and 1 patient (4%) reported an SAE (grade 3 intractable nausea and/or vomiting) related to the Bria-IMT regimen. Notably, no instances of Interstitial Lung Disease were reported.

RESULTS

ORR/CBR

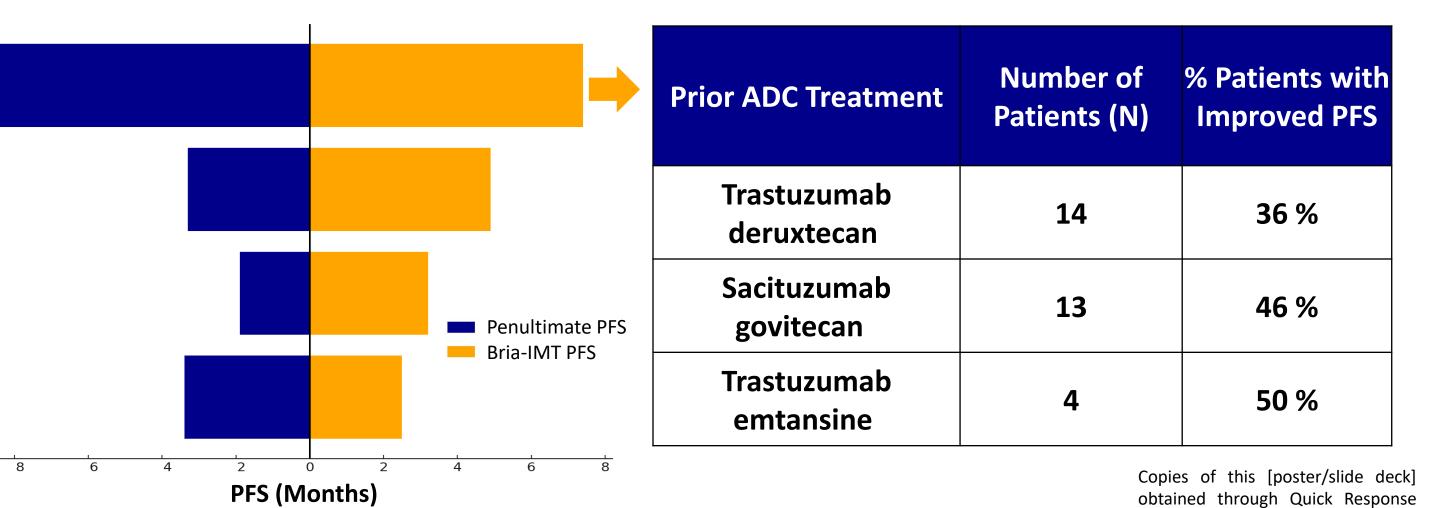
On study


Penultimate


Best ORR includes CR and PR by investigator or central read starting at first assessment at 3-month. Best CBR includes CR, PR and SD by investigator or central read starting at first assessment at 3-

Conclusion: The ADC-resistant cohort consisted of patients with advanced metastatic breast cancer (MBC) encompassing a spectrum of molecular subtypes. Best overall objective response rate (ORR) to the treatment was 12%, with HER2+ showing the highest ORR at 50%. Best clinical benefit rate (CBR) was favorable, with an overall rate of 53%. HER2+ subtype demonstrated a 100% CBR, suggesting a potential subtype-specific efficacy.

Figure 2: Penultimate Therapy PFS vs Bria-IMT PFS ratio by specific ADC.

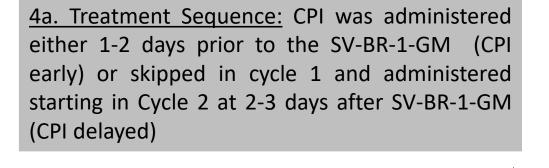


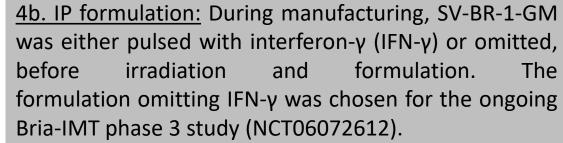
PFS (months)

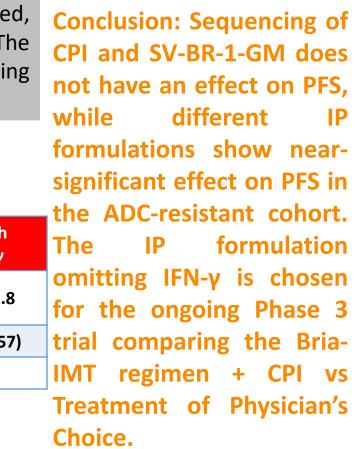
Table 4: Summary of PFS comparison in ADC-resistant patients

Conclusion: Bria-IMT™ showed potential survival advantage over penultimate treatment, likely by reversing immune exhaustion in patients irrespective of specific prior ADC.

Cross-Trial Comparison: Kaplan-Meier curves presenting ADCresistant patient data on PFS of the **Bria-IMT + CPI Combination vs the TPC** arms from two other trials.


RESULTS


Table 5: Cross Trial Comparison of Median Progression-Free Survival (PFS) in **Patients with Multiple Prior Lines of Therapy**


Study	Treatment(s)	Prior Lines of Therapy, median (range)	Median PFS of TPC Arm in months	Median PFS of Experimental Arm in months
Bria-IMT (current trial, ADC- resistant subset)	Single Arm Bria- IMT regimen	6 (3-13) including 1-2 ADC	NA	3.5 (1.1 – 7.4+)
EMBRACE ³	Eribulin vs TPC arm (2:1)	4 (2 – 7)	2.2 (2.0 – 2.6)	3.6 (3.3 – 3.7)
ASCENT ⁴	Sacituzumab govitecan vs TPC arm (1:1)	4 (2-14) in TNBC	1.7 (1.5 – 2.5)	4.8 (4.1 – 5.8)

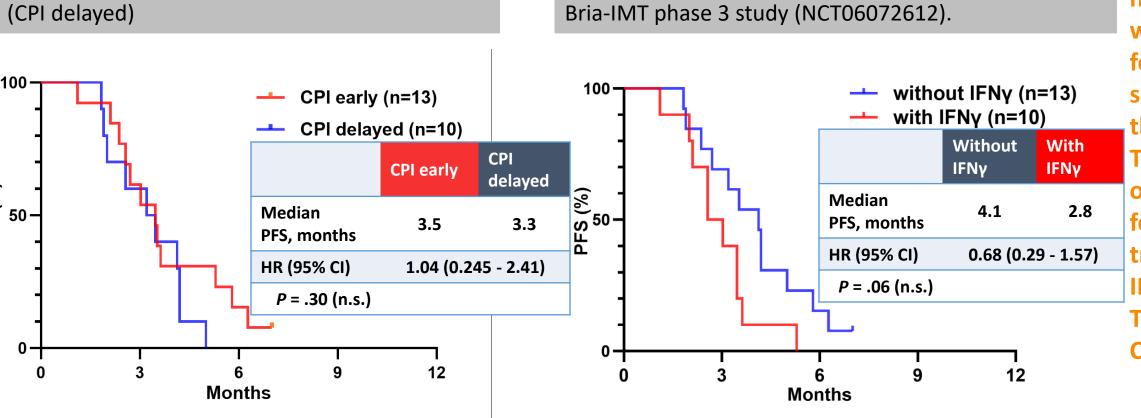

Conclusion: Compared to the Treatment of Physician's Choice (TPC) arms from two other Ph3 trials, Bria-IMT's ADC-resistant cohort had higher 21 median PFS despite more prior lines of therapy, suggesting potential superior efficacy by overcoming immune exhaustion in heavily pretreated populations.

Figure 4: Kaplan-Meier curves presenting the effects on PFS by Treatment sequence (3a) and IP formulation (3b) in ADC-resistant cohort

CONCLUSION

This subset analysis of the Bria-IMT™ regimen in ADC resistant MBC patients suggests clinical benefit and a potential treatment option for this patient population. A CBR of 53% was observed among patients refractory to ADC therapy. No treatment discontinuations were attributed to SV-BR-1-GM and the lack of interstitial lung disease (ILD) underscores the Bria-IMT regimen's favorable safety profile. Future studies are warranted to confirm these results and explore the potential of Bria-IMT™ in broad clinical settings of heavily pretreated contemporary MBC patients.

REFERENCES

- Lopez Lago M et al. *Cancer Res* (2023) 83 (7_Supplement): 685.
- Lopez-Lago M et al. Bria-OTS Immunotherapy Platform: Harnessing Gene-Modified Tumor Cells to Reinvigorate the Cancer Immunity Cycle for Precision Anti-Tumor Responses. AACR 2024 Poster.
- Cortes J et al. *Lancet* (2011) 377: 914–23
- Bardia A et al. *J Clin Oncol* (2024) 00:1-7

ASCO 2024 PUBLICATIONS

Rapid Oral Session: **Updated Phase 2** permission from ASCO® or the **Results**

(QR) Code are for personal use only

and may not be reproduced without

author of this [poster/slides].

Poster Session: Pivotal Phase 3 Trial in Progress

Online Publication: Bria-IMT Intracranial Disease Response

•

Contact: Giuseppe Del Priore, MD, MPH